Question: 1
A Machine Learning Specialist is designing a system for improving sales for a company. The objective
is to use the large amount of information the company has on users’ behavior and product
preferences to predict which products users would like based on the users’ similarity to other users.
What should the Specialist do to meet this objective?
A. Build a content-based filtering recommendation engine with Apache Spark ML on Amazon EMR
B. Build a collaborative filtering recommendation engine with Apache Spark ML on Amazon EMR.
C. Build a model-based filtering recommendation engine with Apache Spark ML on Amazon EMR
D. Build a combinative filtering recommendation engine with Apache Spark ML on Amazon EMR
Answer: B
Question: 2
A Mobile Network Operator is building an analytics platform to analyze and optimize a company's
operations using Amazon Athena and Amazon S3.
The source systems send data in .CSV format in real time. The Data Engineering team wants to
transform the data to the Apache Parquet format before storing it on Amazon S3.
Which solution takes the LEAST effort to implement?
A. Ingest .CSV data using Apache Kafka Streams on Amazon EC2 instances and use Kafka Connect S3
to serialize data as Parquet.
B. Ingest .CSV data from Amazon Kinesis Data Streams and use Amazon Glue to convert data into
Parquet.
C. Ingest .CSV data using Apache Spark Structured Streaming in an Amazon EMR cluster and use
Apache Spark to convert data into Parquet.
D. Ingest .CSV data from Amazon Kinesis Data Streams and use Amazon Kinesis Data Firehose to
convert data into Parquet.
Answer: C
Question: 3
A city wants to monitor its air quality to address the consequences of air pollution. A Machine
Learning Specialist needs to forecast the air quality in parts per million of contaminates for the next 2
days in the city. As this is a prototype, only daily data from the last year is available.
Which model is MOST likely to provide the best results in Amazon SageMaker?
A. Use the Amazon SageMaker k-Nearest-Neighbors (kNN) algorithm on the single time series
consisting of the full year of data with a predictor_type of regressor.
B. Use Amazon SageMaker Random Cut Forest (RCF) on the single time series consisting of the full
year of data.
C. Use the Amazon SageMaker Linear Learner algorithm on the single time series consisting of the
full year of data with a predictor_type of regressor.
D. Use the Amazon SageMaker Linear Learner algorithm on the single time series consisting of the
full year of data with a predictor_type of classifier.
Answer: C
Question: 4
A Data Engineer needs to build a model using a dataset containing customer credit card information.
How can the Data Engineer ensure the data remains encrypted and the credit card information is
secure?
A. Use a custom encryption algorithm to encrypt the data and store the data on an Amazon
SageMaker instance in a VPC. Use the SageMaker DeepAR algorithm to randomize the credit card
numbers.
B. Use an IAM policy to encrypt the data on the Amazon S3 bucket and Amazon Kinesis to
automatically discard credit card numbers and insert fake credit card numbers.
C. Use an Amazon SageMaker launch configuration to encrypt the data once it is copied to the
SageMaker instance in a VPC. Use the SageMaker principal component analysis (PCA) algorithm to
reduce the length of the credit card numbers.
D. Use AWS KMS to encrypt the data on Amazon S3 and Amazon SageMaker, and redact the credit
card numbers from the customer data with AWS Glue.
Answer: C
Question: 5
A Machine Learning Specialist is using an Amazon SageMaker notebook instance in a private subnet
of a corporate VPC. The ML Specialist has important data stored on the Amazon SageMaker notebook
instance's Amazon EBS volume, and needs to take a snapshot of that EBS volume. However, the ML
Specialist cannot find the Amazon SageMaker notebook instance’s EBS volume or Amazon EC2
instance within the VPC.
Why is the ML Specialist not seeing the instance visible in the VPC?
A. Amazon SageMaker notebook instances are based on the EC2 instances within the customer
account, but they run outside of VPCs.
B. Amazon SageMaker notebook instances are based on the Amazon ECS service within customer
accounts.
C. Amazon SageMaker notebook instances are based on EC2 instances running within AWS service
accounts.
D. Amazon SageMaker notebook instances are based on AWS ECS instances running within AWS
service accounts.
Answer: C
Source Link :
Related Links:
No comments:
Post a Comment